PENINGKATAN EKSPRESI LAMININ NAMUN TIDAK VE-CADHERIN PADA SAWAR DARAH OTAK SETELAH INFEKSI Mycobacterium tuberculosis INTRAPULMONALIS

Aris Widayati, Laksmi Wulandari, Wibi Riawan

Abstract


Tuberkulosis merupakan  masalah kesehatan utama di dunia. Pada tahun 2016, WHO menemukan angka kejadian TB kurang lebih 10,4 juta, dan untuk Indonesia dilaporkan sebesar 156.723 kasus. Meskipun penyebaran Mycobacterium tuberculosis di susunan saraf pusat tercatat hanya 1%, namun memiliki tingkat kecacatan dan kematian yang tinggi, sehingga menuntut adanya tatalaksana yang efektif untuk mengatasinya. VE-chaderin dan laminin merupakan protein adhesin yang berfungsi mengendalikan permeabilitas pembuluh darah dan mempertahankan integritas blood brain barrier, sehingga kedua protein adhesin tersebut dapat menjadi salah satu target terapi tuberkulosis otak. Penelitian ini bertujuan untuk mengetahui efek paparan M. tuberculosis secara inhalasi terhadap ekspresi laminin dan VE-chaderin pada sel endotel blood brain barrier. Penelitian ini menggunakan mencit Balb/c  (Mus musculus) yang diinfeksi oleh M.tuberculosis strain H37Rv secara inhalasi. Jaringan otak diperiksa menggunakan metode imunohistokimia dengan  antibodi mt-38, antibodi VE-chaderin dan laminin. Hasil penelitian menunjukkan adanya invasi M. tuberculosis pada  mikroglia jaringan otak mencit, diiketahui juga adanya peningkatan ekspresi laminin, sedangkan VE-chaderin tidak menunjukkan adanya perubahan. Proses masuknya M. tuberculosis ke otak diduga terjadi melalui proses diapedesis atau melalui peningkatan ekspresi laminin tanpa perubahan pada VE-chaderin dan reseptor laminin diduga sebagai tempat berikatan yang memungkinkan bakteri tersebut masuk ke jaringan otak.

 


Keywords


Infeksi Mycobacterium tuberculosis; Laminin; VE-chaderin.

Full Text:

PDF

References


World Health Organization (WHO).Global Tuberculosis Report. Geneva. 2017.

Kementrian Kesehatan RI. Data dan Informasi Profil Kesehatan Indonesia 2016. Boga Hardhana dkk (Editor). Jakarta: Pusat Data dan informasi Kementerian Kesehatan RI. 2017

Rock RB, Olin M, Baker CA, Molitor TW, and Peterson PK. Central Nervous System Tuberculosis: Pathogenesis and Clinical Aspects. Clinical Microbiology Reviews. 2008;21:243-361.

Jacobs RF, Starke JR. Mycobacterium tuberculosis. In: Long SS, Pickering, LK,Prober CG (Editors). Principles and Practice of Pediatric Infectious Diseases. New York: Churchill Livingstone.2003.

Jain SK, Kwon P, Moss WJ. Management and Outcomes of Intracranial Tuberculomas Developing During Antituberculous Therapy: Case Report and Review. Clin Pediatr. 2005; 44:443–450.

Banks WA and Erickson MA. The Blood–Brain Barrier and Immune Function and Dysfunction. Neurobiology of Disease. 2010; (37):13 – 25.

Zlokovic BV. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. J Neuron. 2008; (57):178–201.

VestweberDet al. Cell Adhesion Dynamics at Endothelialjunctions: VE-Cadherin as A Major Player. J cell biol. 2008; (19):8–15.

Gotsch U,Borge E, Bosse R, Simon M, Mossmann H, Vestweber D. VE-Cadherin Antibody Accelerates Neutrophil Recruitment In Vivo. Journal of Cell Science.1997; 110:583-588.

Almutairi MMA, Gong C, Xu YG, Chang Y, Shi H. Factors Controlling Permeability of The Blood–Brain Barrier. Cell Mol Life Sci. 2016; 73:57–77.

ThepparitC and Smith D. Serotype-Specific Entry of Dengue Virus into Liver Cells: Identification of the 37 kDa/67 kDaHigh Affinity Laminin Receptor as a Dengue Virus Serotype 1 Receptor. JVirol. 2004; 78:12647–12656.

Akache, B, Grimm D, Pandey K, Yant S,Zu H, and Kay M. The 37/67 KiloDalton Laminin Receptor is a Receptor for Adeno-Associated Virus Serotypes 8,2,3, and 9. J Virol. 2006;80:9831–9836.

Orihuela CJ,Mahdavi J,Thornton J,Mann B,Wooldridge KG,Abouseada N,Oldfield NJ, Self T, Ala’Aldeen DAA,Tuomanen EI.LamininReceptor Initiates Bacterial Contact with The Blood Brain Barrier in Experimental Meningitis Models.The Journal of Clinical Investigation. 2009; 119(6):1638-164.

Sixt M et al.Endothelial Cell Laminin Isoforms, Laminins 8 and 10, Play Decisive Roles in T Cell Recruitment Across The Blood–Brain Barrier in Experimental Autoimmune. Encephalomyelitis.J Cell biol. 2001; 153(5):933 – 945.

Nicklas W, BaneuxP,Boot R, Decelle T ,Deeny AA, Fumanelli M, Ilgen–Wickle B. Recommendations for the Health Monitoring of Rodent and Rabbit Colonies in Breeding and Experimental Units. Lab Animal. 2002; 36:20-42.

Mac Farland HN. Designs and Operational Characteristics of Inhalation Exposure Equipment – A Review.Fund Appl Toxicol.1983; 3:603-613.

Smith D, Wiegeshaus E, Balasubramanian V. Animal Model for Experimental Tuberculosis. Clin Infect. 2000; 31(3):S68- S70.

Denker ND,Scelig DM, Telling GC, Hoover EA. Aerosol and Nasal Transmission of Chronic Wasting Diseases in Cervidized Mice. J Gen Virol. 2010; 91:1651- 1658.

Orme IM and Robert AD.Animal Models of Mycobacteria Infection. Curr Protocols Immunol. 1999; 2:499-511.

Moerloose KB et al. Cigaratte Smoke Exposure Facilitats Allergic Sensitization in Mice . Respir Res. 2006; 7:49.

Joan AN et al. Structure and Function of The Blood–Brain Barrier. Neurobiology of Disease. 2010; 37:13–25.

Be NA, Kim KS, Bishai.W, Jain SK. Pathogenesis of Central Nervus System Tuberculosis. Curr Mol Med. 2009; 9(2):94-99.




DOI: http://dx.doi.org/10.21776/ub.majalahkesehatan.005.03.3

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.